Problem 6

For the following series, write formulas for the sequences a_{n}, S_{n}, and R_{n}, and find the limits of the sequences as $n \rightarrow \infty$ (if the limits exist).

$$
\sum_{1}^{\infty} \frac{1}{n(n+1)} \quad \text { Hint: } \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}
$$

Solution

$$
\begin{aligned}
a_{n} & =\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} \\
S_{n} & =\sum_{i=1}^{n}\left(\frac{1}{i}-\frac{1}{i+1}\right)=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1} \\
& =\frac{n}{n+1} \\
S & =\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1 \\
R_{n} & =S-S_{n}=1-\left(1-\frac{1}{n+1}\right)=\frac{1}{n+1} \\
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{1}{n(n+1)}=0 \\
\lim _{n \rightarrow \infty} R_{n} & =\lim _{n \rightarrow \infty} \frac{1}{n+1}=0
\end{aligned}
$$

